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Abstract
We develop a formalism for the calculation of the flow of angular momentum
carried by the fluctuating electromagnetic field within a cavity bounded by two
flat anisotropic materials. By generalizing a procedure employed recently for
the calculation of the Casimir force between arbitrary materials, we obtain an
expression for the torque between anisotropic plates in terms of their reflection
amplitude matrices. We evaluate the torque in 1D for ideal and dispersive
model materials.

PACS numbers: 42.50.Lc, 12.20.Ds, 12.20.−m, 78.68.+m, 42.50.Nn

1. Introduction

In the last decade the Casimir effect [1] has received considerable attention, as the recently
attained high experimental accuracy has permitted detailed tests of theoretical predictions
[2–9]. This, in turn, has stimulated growing interest in fundamental aspects of the vacuum
field. The study of vacuum forces between realistic materials was pioneered by Lifshitz [10],
who considered local homogeneous materials whose fluctuating currents were the sources
of the fluctuating electromagnetic field and whose correlations were related to the dielectric
response of the materials. One of the limitations of the Lifshitz theory is the requirement
of a definite microscopic model of matter which has to be solved simultaneously with the
electromagnetic field equations. Thus, the applicability of the results seems to be limited
by the generality of that initial model. In particular, Lifshitz results were developed for
isotropic materials. Nevertheless, the vacuum energy has been calculated for cavities bounded
by anisotropic materials, first in the non-retarded limit [11] and later for arbitrary distances
[12], resulting in a torque whenever the optical axes of the plates are not aligned with each
other. An alternative derivation of the Casimir torque in the one-dimensional (1D) case has
been developed [13] starting from the angular momentum flux carried by the field. Analytical
formulae have been found in the retarded limit when the anisotropy is small [14]. Numerical
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Figure 1. (a) Vacuum cavity V of width L bounded by two arbitrary material slabs (1 and 2) with
surfaces at z1 and z2. A photon with polarization êi = ê

β
i εβ propagating within the cavity and

incident upon z2 is either reflected coherently with amplitude and polarization r2êr = êα
r r

αβ

2 εβ , or
lost from the cavity with probability 1−|r2|2. (b) Fictitious system made up of three empty regions
I, II and III , bounded by perfect mirrors at z0 and z3 and with infinitely thin sheets at z1 and z2

whose reflection amplitudes r
αβ
a are identical to those of the real system and whose transmission

amplitudes t
αβ
a are such that energy is conserved with no absorption whatsoever. The field within

the fictitious cavity V ′ (region II ) is the same as within the real cavity V .

calculations have also been performed for real anisotropic materials such as barium titanate
and it has been shown that the torque may be large enough to be experimentally measurable
in several novel experimental configurations [15].

In the previous theoretical works essential assumptions about the dielectric properties of
the plates were made from the onset in order to derive expressions for the Casimir torque.
However, recent works [16, 17] have shown that if the theory is set up in terms of the reflection
coefficients of the media, it is possible to decouple the calculation of the Casimir force from
the calculation of the dielectric response of the materials. The so-called scattering approach
has permitted the calculation of the force for a wide class of systems simply by plugging
into the resulting formulae the appropriate reflection amplitudes or surface impedances.
Thus, transparent and opaque, local and non-local, infinite and finite, homogeneous and
heterogeneous systems may be treated in the same footing. In the present paper we generalize
the scattering approach to account for anisotropy as well. We present a new derivation of
the Casimir torque between plates with arbitrary dielectric properties characterized by their
anisotropic optical coefficients. For simplicity, in this paper we focus our attention on one-
dimensional systems, although our approach is also applicable to three-dimensional (3D) ones
[18]. We present results both for ideal systems, for which analytical formulae are obtained,
and for dichroic systems.

2. Scattering approach

To calculate the torque we follow the scattering approach [16, 17], illustrated by figure 1(a).
A photon within the cavity may be described by its amplitude E , frequency ω, wavevector
�k = ( �Q,±q), and polarization ê = êαεα (sum implied). We may choose the independent
polarizations êα as s or p (or equivalently, TE and TM) which depend on the propagation
direction. When a photon with polarization êi = ê

β

i εβ is incident upon the surface, say, of
medium 2 at z2, it is either reflected coherently with an amplitude and polarization proportional
to r2êr ≡ êα

r r
αβ

2 εβ , or transmitted with a probability 1 − |r2|2. Here, r
αβ
a is a 2 × 2 matrix

that describes the reflection amplitude of medium a = 1, 2. For isotropic media, r
αβ
a may

be taken as a scalar whenever the incoming field has s or p polarization, but that separation
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is not possible in general when the media are anisotropic. We remark that r
αβ
a is defined

to be the complete reflection amplitude of medium a, not only that of its front surface. For
instance, if medium a were a thin film or a layered system, the multiple reflections within a
would have to be incorporated into r

αβ
a . Thus, if the photon is not coherently reflected, it must

necessarily be absorbed within a or else be transmitted into the empty space beyond. The
principle of detailed balance implies that in thermodynamic equilibrium, for every photon that
is not reflected and is therefore lost from the cavity either through absorption or transmission,
an equivalent photon is incoherently launched into the cavity, either being radiated by the
absorbing medium, or else arriving from the vacuum beyond and being transmitted into the
cavity. In any case, the probability that a photon with wavevector ( �Q,−q) and polarization êr

arrives in the cavity from medium 2 with no phase relation to the lost photon is proportional
to 1 − |r2|2. Similar statements apply to medium 1.

From the previous discussion, it follows that in equilibrium the properties of the radiation
field within the cavity V depend on the cavity walls only through their optical coefficients r

αβ
a .

Equivalently, the cavity radiation is completely determined by the exact surface impedance
Z

µν
a defined through [n̂a × (n̂a × �Ea)]µ = Z

µν
a (n̂a × �Ha)

ν , where n̂a denotes the outgoing unit
normal of surface a, �Ea and �Ha are the total electric and magnetic fields at za and µ, ν = x, y

denote Cartesian coordinates along the walls. Thus, the electromagnetic radiation within the
real cavity V would be identical to that within a fictitious cavity V ′ bounded by infinitely thin
sheets at z1 and z2, provided their reflection amplitudes r

αβ
a are chosen to be equal to those of

the walls of V . Their transmission amplitudes t
αβ
a may then be chosen in order to guarantee

energy conservation with no absorption whatsoever of electromagnetic energy (figure 1(b)).
As there is no absorption in the fictitious system, there is no excitation of material degrees of
freedom and the normal modes of the electromagnetic field form a complete orthogonal basis
of the corresponding Hilbert space, allowing the use of well-developed quantum-mechanical
procedures for the calculation of the field properties. Contrariwise, in the real system the
electromagnetic energy is absorbed, probably exciting electronic or vibrational transitions, so
that the problem cannot be treated quantum mechanically without incorporating the electronic
and/or vibrational degrees of freedom into the calculation, which would require in turn the
use of a microscopic model of the material.

In figure 1(b) we have included two perfect mirrors at positions z0 and z3 in order to
quantize and count the normal modes of the system. The photons that are reflected at z0 and
z3 and are transmitted back into V ′ mimic the photons injected into the real cavity V in order
to restore thermal equilibrium, and in the limit LI , LIII → ∞ their phase is so large and so
rapidly varying with ω that it effectively bears no relation to the phase of the photons lost from
the cavity.

Using the scattering approach we can treat dissipationless, homogeneous, isotropic, local,
sharp media on the same footing as dissipative, inhomogeneous (layered systems, superlattices,
photonic structures), chiral, spatially dispersive materials with a smooth selvedge. In
particular, we can treat anisotropic systems.

3. Torque in 1D

We consider a finite beam propagating within V ′ along ±z,

�E(�r, t) = Erêr ei(qz−ωt) + Elêl e−i(qz+ωt), (1)

where the subscripts r and l denote right and left moving contributions, Er and El are the
corresponding amplitudes which we take as slowly varying functions of �r , and êr and êl the
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polarizations within the xy plane. To ensure that the field is divergence-less, an additional
field contribution along z has to be added to (1),

� �E(�r, t) = (êr · ∇Er ei(qz−ωt) − êl · ∇El e−i(qz+ωt))iẑ/q. (2)

Expressions similar to (1) and (2) may also be written for the magnetic field. The torque τz

over medium 2 may be obtained by integrating the angular momentum flux M = �r × T over
a surface that surrounds it, where T is the electromagnetic stress tensor. Thus,

τz = − 1

8π
Re

∫
da[(�r × �E∗)zEz + (�r × �B∗)zBz], (3)

where the integral is over the cross section of the beam. Note that had we started our calculation
with an infinitely extended plane wave, Ez and Bz would have been zero, but the integral in
equation (3) would have been over an infinitely extended surface, yielding an ill-defined result.
On the other hand, starting from equation (3) we can take the limit of a plane wave, obtaining
well-defined expressions. The electromagnetic torque may be considered an edge effect that
survives in the plane wave limit. Substituting (1) and (2) and similar expressions for the
magnetic field �B, and after some manipulation, we obtain

τz = − A

8πq2
Re( �E × ∂z

�E∗)z, (4)

where A → ∞ is the cross sectional area of the wavefront. It can easily be checked that
equation (4) is consistent with the quantum mechanical view that each photon of energy h̄ω

carries an angular momentum ±h̄ along ±z with speed c, according to its helicity.
Now we consider one normal mode of the fictitious system with amplitude E0 and

frequency ω, �E = E0 �φ(z) e−iωt , where

�φ(z) = �C� eiqz + �D� e−iqz (� = I, II, III ), (5)

is a spinorial normalized wavefunction with components φµ (µ= x, y), �C�, �D� are
distinct coefficients within each region � and q = ω/c. In the limit LI , LIII → ∞, the
electromagnetic energy U = [LI (‖CI‖2 + ‖DI‖2) + LIII (‖CIII‖2 + ‖DIII‖2)]|E0|2A/8π

and the normalization condition 1 = [LI (‖CI‖2 + ‖DI‖2) + LIII (‖CIII‖2 + ‖DIII‖2)] are
dominated by the large fictitious regions I and III, so we may identify U = A|E0|2/8π and
solve for the amplitude |E0|2 = 8πfωh̄ω/A in terms of the equilibrium photon occupation
number fω = coth(βh̄ω/2)/2 at temperature kBT = 1/β. Thus, the contribution to the torque
(3) of one mode may be written as

τz = − h̄c

2q
fω[φx∂zφ

∗
y − φy∂zφ

∗
x + (∂zφy)φ

∗
x − (∂zφx)φ

∗
y ]. (6)

Now we label each mode by an index n and sum (6) over n to obtain the total torque

τz = −h̄c

∫
dq fqc

∑
n

δ
(
q2 − q2

n

) × [φnx∂zφ
∗
ny − φny∂zφ

∗
nx + (∂zφny)φ

∗
nx − (∂zφnx)φ

∗
ny], (7)

where we introduced the q integration and Dirac’s δ in order to write the result in terms of
Green’s function Gµν(z, z

′) = ∑
n φnµ(z)φ∗

nν(z
′)
/(

q2 + iη − q2
n

)
,

τz = h̄c

π

∫ ∞

0
dq fqc(∂z′ − ∂z)[Axy(z, z

′) − Ayx(z, z
′)]z′→z, (8)

where Aµν(z, z
′) = [Gµν(z, z

′) − Gνµ(z′, z)]/2i is the anti-Hermitian part of Gµν . Here, η

is a positive infinitesimal and we employed the identity πδ(x) = −Im(x + iη)−1. Green’s
function may be evaluated by solving

(
∂2
z + q2 + iη

)
Gµν(z, z

′) = δ(z − z′)δµν , subject to the
appropriate boundary conditions. We write the solution in terms of the two homogeneous
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solutions �uλ(z) and �vλ(z) (λ = 1, 2) that satisfy the boundary conditions on the right- and the
left-hand sides of the system, respectively,

G(z, z′) = u(z)[u′(z) − v′(z′)v−1(z′)u(z′)]−1θ(z − z′)
− v(z)[v′(z′) − u′(z′)u−1(z′)v(z′)]−1θ(z′ − z), (9)

where G(z, z′) is a matrix with elements Gµν(z, z
′), u(z) and v(z) are matrices with columns

�uλ(z) and �vλ(z) respectively, i.e., with matrix elements uµλ(z) and vµλ(z), u′ and v′ denote
their derivatives with respect to their argument, and θ denotes the Heaviside unit step function.

For the case of uniaxial or orthorhombic slabs with normal-incidence reflection amplitudes
rxa

and rya
in the principal axes xa and ya of the ath slab we may write

u(z) = R · u0(z), v(z) = RT · v0(z), (10)

where R and RT are rotation matrices by angles γ /2 and −γ /2, respectively, and

u0(z) =
(

1 0
0 1

)
eiq(z−z2) +

(
rx2 0
0 ry2

)
e−iq(z−z2) (11)

v0(z) =
(

1 0
0 1

)
e−iq(z−z1) +

(
rx1 0
0 ry1

)
eiq(z−z1) (12)

are the solutions at the right and left sides of V ′ referred to the principal axes of the
corresponding slab, which we assumed to be rotated by an angle γ with respect to those
of the opposite slab. Note that R and RT act only on the first index µ of u and v.

Substituting equations (10)–(12) in equations (9) and (8) we obtain a simple expression

τz = − h̄c

2π

∫ ∞

0
dκ

�r1�r2 sin 2γ e−2κL

�r1�r2 sin2 γ e−2κL + (1 − r1xr2x e−2κL)(1 − r1yr2y e−2κL)
, (13)

where we also took the zero temperature limit fqc = 1/2 and we deformed the q integration
path from the positive real axis toward the positive imaginary axis, as is usual. Here, κ = q/i

and we defined the anisotropy �ra = rxa
− rya

of the ath slab. Equation (13) is the main result
of the present paper. We have verified that it is equivalent to the result of [13], although in a
much more compact form.

4. Results

As a first application of our result (13) we calculate the torque between two ideal perfectly
reflecting mirrors covered by ideal perfectly absorbing polarizers, that is, we take rx1 = rx2 =
±1, ry1 = ry2 = 0. In this case, equation (13) may be integrated analytically, yielding

τz = h̄c

2πL
tan γ log sin2 γ. (14)

Note that the torque decays as 1/L, in analogy to the 1/L2 decay of the Casimir force between
perfect mirrors in 1D and the corresponding 1/L4 decay in 3D. In figure 2 we show the
torque as a function of the angle. As could have been expected, it is a periodic function
of γ with period π . It is null when both polarizers are aligned, γ = 0, corresponding to
a stable equilibrium orientation, and when they are orthogonal to each other, γ = ±π/2,
corresponding to unstable equilibrium. The inset shows that the slope of τz(γ ) is singular at
the stable equilibrium point. We remark that the torque is not simply proportional to sin 2γ

and therefore its extreme values are not at γ = ±π/4. However, it is odd-symmetric around
γ = 0. The maximum torque may be estimated as 0.1h̄c/L; for example, at L = 10 nm it is
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Figure 2. Torque in 1D at T = 0 between perfect mirrors covered by perfect polarizers as a
function of the angle γ between the corresponding principal directions.
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Figure 3. Torque between two lossy mirrors with reflection amplitudes |r| = 0.6, 0.7, 0.8, 0.9, 1.0
covered by perfect polarizers as a function of the angle γ between the corresponding principal
directions.

about 10−19 N m. For dimensional reasons, in a full 3D calculation our result above would
have to be scaled by A/L2 multiplied by some dimensionless factor. If we replace the perfect
mirrors above by lossy mirrors with reflection amplitude r, we can again obtain an analytical
expression,

τz = h̄c tan γ

2πL
log(1 − |r|2 cos2 γ ). (15)

Figure 3 shows that as |r| diminishes τz is reduced and becomes closer to a simple sinusoidal
function τz ≈ −h̄c|r|2 sin 2γ /4πL. The inset shows that the singularity at γ = 0 disappears
when |r| < 1.

In figure 4 we illustrate the torque between two identical dichroic mirrors relatively rotated
by γ = π/4 as a function of separation. Each mirror is characterized by a dielectric tensor
with principal components

εµa
(ω) = 1 +

ω2
µap

ω2
µa

− ω2 − iω/τµa

(16)
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Figure 4. Torque between two identical dichroic mirrors as a function of their separation
for a fixed angle γ = π/4 between their principal directions. The resonance parameters are
ωx1p = ωy1p = ωx2p = ωy2p = ωp, ωx1 = ωx2 = ωp, ωy1 = ωy2 = √

2ωp .

which have different resonance frequencies along each principal direction. Thus, our model
incorporates some aspects of real anisotropic, dispersive, absorptive systems. Here, ωµa

is the
frequency, τµa

the lifetime and ωµap the intensity of a resonance of the ath slab corresponding
to a polarizing field along the µth principal axis. In this case the characteristic frequency ωp

defines a characteristic lengthscale c/ωp. For separations much smaller than this distance the
calculation is essentially non-retarded and the 1D torque becomes constant, proportional to
h̄ωp. On the other hand, for larger separations we reach the retarded regime and the torque
decays as h̄c/L, as for the ideal case.

5. Conclusions

Use of the scattering approach allowed us to obtain simple expressions for the Casimir torque
between anisotropic media in terms of their optical coefficients. Thus our results are applicable
to arbitrary anisotropic materials and not only to semi-infinite, local, homogeneous ones. For
instance, they may readily be applied to free standing or supported anisotropic films and to
heterogeneous systems. We obtained analytical expressions for ideal systems which are the
anisotropic counterparts to the ideal Casimir mirrors, and numerical results covering both the
retarded and non-retarded regions for dichroic systems with dispersive and absorptive response
functions. Our formalism has also permitted calculations of the torque between dissimilar
materials, suggesting procedures to manipulate it, and it has been generalized to the full 3D
case [18].
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